
Abstract. 
We prove the infinite q-binomial theorem as a consequence of the 
finite q-binomial theorem. 

1. THE FINITE q-BINOMIAL THEOREM 

Let x and q be complex numbers, (they can be thought of as real numbers if the reader 

prefers,) and for the moment, q =/:- 1. The finite q-binomial theorem is, 

(1) (1 + x)(1 + qx) ... (1 + qn-1x) = t (q)n qk(k-1)/2xk, 
k=O (q)k(q)n-k 

where n is a positive integer and 

(2) 

0 bserve that 

(q)k := { (1- q)(1- q2
) ... (1- qk), if k = 1, 2, 3, ... , 

1, if k = 0. 

l
. (q)n 
1m -:-:---=.:...,.----

q-->1 (q)k(q)n-k 

. (1 _ qn) (1 _ qn-1) (1 _ qn+1-k) 
hm ... _:______=----_....:... 

q--->1 (1- q) (1 - q2 ) (1- qk) 

n n-1 
-·--··· 
1 2 

n! 
k!(n- k)! · 

n-k+1 
k 

Therefore identity (1) reduces to the well-known binomial theorem 

in the case q ~ 1. 

n I 

( ) n """"' n. k 
1 +x = L k!(n- k)!x 

k=O 

2. A PROOF OF THE FINITE q-BINOMIAL THEOREM 

In this section, we reproduce the proof of the finite q-binomial theorem given by G. Polya 

and G.L. Alexanderson in their very interesting paper [4]. Denote the left hand side of (1) 
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by f(x) and observe that 

(3) (1 + x)f(qx) = f(x)(1 + qnx). 

If we write 
n 

f(x) = L Qkxk , 
k=O 

then (3) shows that 
n n 

(1 + x) L Qkqkxk = (1 + qnx) L Qkxk. 
k=O k=O 

Comparing coefficients of xk, we find that , for k 2: 1, 

Qkqk + Qk-1qk- 1 = Qk + qnQk-1 , 

or 
qn-k+1 _ 1 

Q Q k-1 
k = k-1 k q . 

q -1 
Since Q0 = 1, we conclude that 

Q _ (q)n k(k-1)/2 
k - q 

(q)k(q)n-k . 

3. TWO IDENTITIES OF EULER 

From now on we will assume that lql < 1. Letting n-----+ oo in the finite q-binomial theorem 

(1) and applying Tannery's theorem [5, §49] to justify letting n-----+ oo under the summation 

sign, we deduce an identity of Euler: 

<Xl <Xl k(k-1)/2 g (1 + qkx) = {; q (q)k xk . (4) 

If we set x = -1 in the finite q-binomial theorem (1) and multiply by (-l)n j (q)n we find 

that 

(5) t 1 qk(k-1) /2(-l)n-k = O 
k=O ( q)k( q)n-k 

for n = 1, 2, 3, .... 

For n = 0, it is clear that the expression on the left side of (5) is equal to 1. It is known 

that if 

then 

C(x) = A(x)B(x) 
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where 
00 00 00 

Consequently, (5) implies that 

A(x)B(x) = 1 

where 
00 qk(k-1)/2 k 

A(x) = L ( ) x 
k=O q k 

and 
~ k xk 

B(x) = L.)-1) -( ) . 
k=O q k 

This, together with ( 4), implies another identity of Euler: 

(6) 

Equation (4) is valid for all complex numbers x, while equation (6) is valid for lxl < 1. In 

each case Jql < 1. 

4. THE INFINITE q-BINOMIAL THEOREM 

Replace x with -a in the finite q-binomial theorem (1) and write the result in the form 

(1 _ a)(1 _ qa) ... (1 _ qn-la) = t qk(k-l)/2(-a)k 

(q)n k=O (q)k(q)n-k 

By applying the technique in the previous section, we find that 

f (1- a)(1- qa) ... (1- qk-la) xk = (f qk(k-l)/2 ( -ax)k) (f _£_) . 
k=O (q)k k=O (q)k k=O (q)k 

By Euler's identities (4) and (6), we deduce 

(?) f (1- a)(1- qa) · · · (1- qk-la) xk =IT (1- qkax). 

k=O (q)k k=O (1 - qkx) 

This is called the infinite q-binomial theorem. It is valid for Jxl < 1, Jql < 1 and any complex 
number a. If we replace a with qa and let q -----+ 1- in the infinite q-binomial theorem, then 

we formally obtain the binomial series 

~ (a)(a + 1) ···(a + k- 1) k = (1 _ )-a 
~ k! X X . 
k=O 
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A rigorous justification of the limit process is given in [2, pp. 491-492]. 

The finite q-binomial theorem (1) is a special case of the infinite q-binomial theorem (7). 

To see this, let n be a positive integer, let a = q-n and replace x with -qnx in (7). The 

result is (1). The Euler identities (4) and (6) are also special cases of the infinite q-binomial 

theorem ( 7). 

In this section we have seen that the infinite q-binomial theorem (7) is in fact a consequence 

of the finite q-binomial theorem (1). 

5. THE JACOBI TRIPLE PRODUCT IDENTITY 

In Section 3 we saw that Euler's identity (4) is a limiting case of the finite q-binomial 

theorem (1). There is another important limiting case of the finite q-binomial theorem, 

which we shall now obtain. 

In the finite q-binomial theorem (1), replace n with 2n and q with q2 , and then let x = 

q1- 2nz, to get 

2n ( 2) 
(1 + ql-2nz) ... (1 + q-lz)(1 + qz) ... (1 + q2n-lz) = L 

2 
q 

2
2n qk2 -2nkzk. 

k=O (q )k(q hn-k 

Multiply both sides by (q2)nqn
2 
z-n and set k = n + j in the sum, to get 

g(l + q2
Hz)(l + q2

Hz-
1)(1- q

2
;) ~ i;n (q~~?:;(~''j:_; qi' z; 

Applying Tannery's theorem [5, §49], we take the limit as n -----+ oo. We obtain 
00 00 

j = l j = -oo 

This result is called the Jacobi triple product identity. It is valid for lql < 1 and any non-zero 

complex number z. The right hand side should be viewed as a Laurent series in the annulus 

0 < izl < oo. There is an essential singularity at z = 0. The left hand side shows that there 

are zeros at z = ... , -q-3, -q-1 , -q, -q3, .. . , and these are the only zeros. 

The above proof of the Jacobi triple product can be found in [2, p.497]. A completely 

different proof of the Jacobi triple product identity was given independently by G.E. Andrews 

[1] and P.K. Menon [3]. Andrews and Menon showed that the Jacobi triple product identity 

may be proved using the two Euler identities (4) and (6). Since we have shown that the 

Euler identities are consequences of the finite q-binomial theorem (1), the proof of Andrews 

and Menon gives another proof of the Jacobi triple product identity which depends only on 

the finite q-binomial theorem. 
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6. SUMMARY 

In this article we have seen that the two Euler identities (4) and (6), the infinite q-binomial 

theorem (7) and the Jacobi triple product identity are all consequences of the finite q-binomial 

theorem ( 1). 

Historical information about the origins of these identities is given in [2, pp. 491, 497 and 

501] . Applications of the identities are wide and varied. For example, see [2, Chapters 10 

and 11]. 
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